Friday, 23 February 2018

Much good news at the Redruth mining sundowner

Last night's February Cornish Mining Sundowner was held at the Trefusis Arms in the historic mining town of Redruth. Amongst the regulars were owners of two of Cornwall's most progressive companies, Nick Wilshaw of Grinding Solutions Ltd, a sponsor of Comminution '18, and James Strongman of Petrolab Ltd, a sponsor of Process Mineralogy '18GSL, who are currently looking to employ more mineral processors for their rapidly expanding business, will be teaming up with Petrolab and others in April to run a one day seminar immediately prior to Comminution '18 in Cape Town. It was also good to see Phil Hingston, of Bisha Mining, Eritrea, and his wife Josephine, and mining entrepreneur Nick Clarke, and his wife Pauline, who recently bought a house in Falmouth.
Barry Wills, Steve Pendray, Pete Shepherd, Nick Wilshaw, James Strongman and Phil Hingston

Josephine Hingston, Barbara Wills, Pauline and Nick Clarke, Bill Hussey,
Alan Matthews, Bentley Orchard and Linda Matthews
Redruth was one of the wealthiest towns in the UK in the 19th century, being the  centre of Cornwall’s former copper and tin mining industry, then the world's largest and richest metal mining area. Although those halcyon days are long passed, there was good news last night of the resurgence of Cornwall's minerals industry.
The Camborne School of Mining was formed in 1888, but the mining school at Redruth preceded it by about 6 years. In 1910 the Redruth and Penzance mining schools were merged with the Camborne school to form the Camborne School of Metalliferous Mining, the modern CSM.  At the last sundowner there was a rumour of mineral processing coming back to CSM, and it was great to hear last night that this is no longer a rumour.  There will be two MSc courses  launched this year, and both have just received full programme approval. One is a one year full-time mineral processing course to be based on the campus which will start in Sept 2018.  This will be open to a wide range of graduates in geology, mining, chemical engineering, or other similar subjects, wishing to specialise in this area. The other course is a three year professional MSc with a significant component on minerals processing, which will start in January 2019.
The great era of Cornish tin mining ended in 1998 with the closure of the South Crofty mine between Camborne and Redruth. Now everyone is optimistic that mining will soon commence again at this old mine. Strongbow Exploration, the Canadian company that is seeking to revive tin production in Cornwall, plans to list this year on London’s AIM exchange for growing companies to raise development funding. Tin prices have been climbing around 8 percent so far this year to nearly $22,000, compared with roughly $5,000 when South Crofty closed and a peak of $33,600 recorded in 2011. There is a high demand for tin now, which has multiple industrial uses, including in electronics.
Strongbow's aim is to get production back in 2021, and the mine has sufficient tin for at least eight years of mine life, although industry sources say the high quality, super-giant lode could carry on producing for decades. It is estimated that around 275 direct jobs and four times that number of indirect roles could be created. The current major project is dewatering the mine and treating the water, and the Environment Agency has issued a permit for the discharge of up to 25,000 cubic metres of treated water into the nearby Red River, which reaches the sea near Gwithian on the north coast; the company estimates that the water will be removed by the end of 2020.
An added bonus for Cornish mining is that Strongbow also has a mineral rights agreement with British company Cornish Lithium, which means it will get royalties from any lithium extracted from brine springs in the area. High levels of lithium readings were first recognised in 1864 in water flowing into Cornish mines, but there was then no market for this lightest of metals, and when the mines in Cornwall closed it was largely forgotten. Now lithium, vital for rechargeable batteries, has been named a strategically important mineral for the UK by the Government because of its importance for developing industries and its scarcity. At present, it is mainly mined in remote parts of Chile, Australia and Nevada in the USA but without a home grown source of lithium the UK would be vulnerable to shortfall as global demand increases. Cornish Lithium, led by Camborne School of Mines graduate Jeremy Wrathall, has secured the rights to develop and extract, via deep drill holes, the lithium deposits under Cornwall, undertaking the largest, single unified exploration project in the county's history, the vast deposits having the potential to unleash a new major industry in the county.
So, much to look forward to as Cornwall's mining heritage takes on a new life. Hopefully more news and gossip at the next sundowner, which will be at the Portreath Arms, in the North Cornwall village of Portreath, on March 22nd.
Twitter @barrywills

Monday, 19 February 2018

Recycling: minerals engineering's greatest challenge

Whether it be plastics or metals, recycling is very much in the news these days. And so it should be, as it is a crucial area of the move towards a circular economy, where nothing is wasted (although thermodynamics teaches us that this is impossible), and at the end of the life of a commodity, the constituent components are recycled back into the closed loop.
Minerals engineering will play a leading role in attempting to make the throw away society, the linear economy, obsolete and our Sustainable Minerals '18 conference in Namibia in June will focus on the efforts that mineral processors and extractive metallurgists are making to reduce wastes, reprocess existing wastes, and the greatest challenge of them all, recycling.
Recycling is viewed by many as the panacea of sustainability. Once an article has reached the end of its useful life, you take it to a municipal waste centre, and it is recycled for further use. This is fine for products made from a single material such as glass, which can be melted down and reused, or for certain metals which are used in their native form, such as copper. Although the demand for copper is such that over 20 million tonnes of the metal is produced each year from primary orebodies, around 50% of the copper that is used in Europe is recycled and the energy required to recycle copper is roughly 85% less than from primary production.
However when metals are alloyed with other metals or non-metals, recycling becomes much more challenging due to complex functional material linkages.   A United  Nations Environment Program (UNEP) report on metal recycling includes a great analogy: imagine making your morning coffee. With the right tools, it’s easy to combine the water, coffee, milk and sugar to create your drink (similar to a linear economy). But if you had to separate it again into the original four ingredients (as required by a circular economy), that would be rather challenging.
If the metals and other elements are in tiny amounts in a device, then the problem becomes even more complex, and perhaps the greatest recycling challenge is that of recovering metals from waste electrical and electronic equipment (WEEE), (electric) vehicles and other complex high-tech products. Each year the world generates some 50 million tons of electronic waste, ranging from batteries to mobile phones, computers etc, and although such devices may have been discarded, they are not without value—the United Nations recently estimated the total worth of all that e-waste at $55 billion, thanks largely to the trace amounts of gold, silver, and other metals they contain.
Some of these metals, such as germanium and gallium, are dependent on their primary production on base metal mining, from which they are by-products. Indium, now critical to our modern lifestyle, is the most important ingredient, as an indium-tin oxide,  in the production of ubiquitous touch screens. Indium is produced in small amounts from the mining of Zn ores, and the sheer number of smart phones, tablets etc. produced each year requires around 700 tonnes per year of indium. Recent estimates however, suggest that total reserves are around 16,000 tonnes, so it is a very finite resource, and great efforts are being made to recycle it and other "Hi-Tech Metals", as will be discussed by Prof. Jens Gutzmer at Hi-Tech Metals '18 in Cape Town in November.
It is unfortunate that the working philosophy of most mobile phone manufacturers is planned obsolescence,  the average smartphone life cycle in Britain now being under two years and the number of mobile phone users in the world is expected to pass the five billion mark by 2019. A smart phone contains around half the elements of the periodic table, so global efforts are needed to improve the design of components in electrical and electronic equipment to facilitate reuse and recycling and the better recovery of precious metals.
One mobile phone manufacturer which is taking a lead on this is the Dutch company Fairphone, who is taking steps to increase the life of its Fairphone 2, and has enlisted the help of two world experts on recycling, simulation and life-cycle assessment to assess the best way of recycling the phone to recover the maximum amount of contained metals. Dr. Antoinette van Schaik, of MARAS BV, The Netherlands, and Prof. Markus Reuter, the Director of the Helmholtz Institute for Resource Technology, Germany, have worked together for many years on the simulation of recycling systems, including life-cycle assessment and the circular economy (linking product design with physical and metallurgical processing). Markus is MEI's consultant for the Sustainable Minerals conferences, and he was recently awarded the degree of Doctor of Engineering (DEng), honoris causa, by his alma  mater, The University of Stellenbosch, for his outstanding contributions to the science and technology of the production and recycling of metals, as well as to the integration of academic research and practice. His work on recycling, design for recycling, and resource efficiency has contributed towards the creation of processes and tools to develop a sustainable society.
van Schaik and Reuter
Antoinette and Markus used simulation software designed by Sustainable Minerals '18 sponsor Outotec to create models of how all the different elements, alloys, plastics and materials associations in the Fairphone 2 behave in the best recycling technologies available today and which existing techniques could offer the highest recovery rates. Markus will present and discuss their findings at Sustainable Minerals '18. The basis of this work has been published in Minerals Engineering over the years and has now found its path into Outotec’s HSC Sim, considering uniquely the full “mineral” properties of products and scrap to understand how these pass through physical separation and metallurgical processing systems of the Circular Economy.
Recycling and innovative new business models are without doubt society's greatest challenges, and mineral processing and extractive metallurgy will be at the forefront of meeting these challenges, so please do join us in Namibia in June for Sustainable Minerals '18, which runs back to back with Biohydrometallurgy '18, also very much involved with the move towards the circular economy. Then in Cape Town in November, Hi-Tech Metals '18 will present the latest developments in the primary and secondary processing of the metals which are now essential elements of our modern society.
Events not to be missed by progressive modern minerals engineers!
Twitter @barrywills

Sunday, 18 February 2018

Minneapolis 2018 is only a week away

The 2018 SME Annual Conference and Expo begins next week in Minneapolis, and I look forward to being there and reporting on mineral processing people, news and innovation.
This is one of the industry's great meeting places and I never have a particular agenda, spending most of my time strolling around the many exhibits and basically seeing what happens.
So if you are in Minneapolis next week and have any involvement with mineral processing and extractive metallurgy, please let me know and we can arrange a time to meet and hopefully highlight your news in my report, which will be published on the blog no later than Monday 5th March.
Updates on the meeting can be found on Twitter at #SME2018ACE.
Twitter @barrywills

Friday, 16 February 2018

Memories of Comminution '98

The 11th in the series of international comminution conferences, Comminution '18, begins in Cape Town in 2 months' time. The first in the series was held 29 years ago at the School of Mines in Camborne, and the only available photo is that below. Can anyone supply any names?
Barry Wills (centre) and Phil Newall (2nd right) of CSM, with Trelleborg delegates at Comminution '89
The 2nd in the series commenced 20 years ago today in Brisbane, Australia. Organised by CSM Associates, Camborne School of Mines, Minerals Engineering journal, Mining Journal Ltd, the JKMRC, and the Comminution Center, University of Utah, it was sponsored by Eriez Magnetics, Australia and Warman International. Below are a few photos taken at the event.
Peter King, BW and Tim Napier-Munn

John Mosher and friend, Jannie van Deventer, BW and J-P Franzidis

With Barbara Wills, Joan Oliver of CSM Associates, and
Linda Shimmield, secretary of CSM Association
 Twitter @barrywills

Thursday, 15 February 2018

The Journey from Mineralogy through Validation to Control and Optimisation

With on-site automated mineralogy, increased computing speed and ruggedised sensors the dream of monitoring and controlling mineral processing plants using mineralogy rather than chemistry is fast becoming a reality.
Current mineralogical analysis allows users to determine the mineralogical composition of mineral samples, indicate mineral associations and mineral particle sizes. This data enables an initial evaluation of the sample, giving indicative liberation sizes and possible mineral recoveries and grades. This data is augmented with targeted laboratory trials to validate predictive models and linking metallurgy to mineralogy. In conjunction with advanced sensors and control software this then enables monitoring, controlling and optimising the process in real time.
The combination of initial analysis, through validation to model development and final implementation via a “Big Data” platform brings the opportunity for plants to maximise their financial gains by maintaining operations at near optimal conditions. This will be the basis of a free seminar, immediately prior to Comminution '18, on 15th April at the Vineyard Hotel, Cape Town, hosted by conference sponsor Grinding Solutions Ltd, showing the journey that Grinding Solutions and their partners Zeiss, iMin Solutions and believe is the future.
This is an open event catering for both MEI Comminution ‘18 conference attendees and any other industry professionals and follows on from a very successful mineral processing seminar hosted in Portugal in September 2017.
The Grinding Solutions seminar in Portugal in September 2017
Further information on the presentations will be available nearer to the time following sign-up and will also be available on the Grinding Solutions Website.
Twitter @barrywills

Tuesday, 13 February 2018

Mighty Metso continues its support of MEI Conferences

Metso is well known to all in the minerals industry. It is a world-leading industrial company, with operations in 50 countries and 12,000 dedicated professionals, offering equipment and services for the sustainable processing and flow of natural resources in the mining, aggregates, recycling and process industries.
So we welcome the company's confirmation of sponsorship of Comminution '18 and Flotation '19, the 5th time that Metso has sponsored each of these conference series in Cape Town.
Current Comminution '18 sponsors

Current Flotation '19 sponsors